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Adult neural stem and progenitor cells (aNSPCs) persist lifelong in teleost models

in diverse stem cell niches of the brain and spinal cord. Fish maintain

developmental stem cell populations throughout life, including both neuro-

epithelial cells (NECs) and radial-glial cells (RGCs). Within stem cell domains of

the brain, RGCspersist in a cyclingor quiescent state,whereasNECs continuously

divide. Heterogeneous populations of RGCs also sit adjacent the central canal of

the spinal cord, showing infrequent proliferative activity under homeostasis. With

the rise of the zebrafish (Danio rerio) model to study adult neurogenesis and

neuroregeneration in the central nervous system (CNS), it has become evident

that aNSPC proliferation is regulated by a wealth of stimuli that may be coupled

with biological function. Growing evidence suggests that aNSPCs are sensitive to

environmental cues, social interactions, nutrient availability, and neurotrauma for

example, and that distinct stem and progenitor cell populations alter their cell

cycle activity accordingly. Such stimuli appear to act as triggers to either turn on

normally dormant aNSPCs or modulate constitutive rates of niche-specific cell

cycle behaviour. Defining the various forms of stimuli that influence RGC and

NEC proliferation, and identifying the molecular regulators responsible, will

strengthen our understanding of the connection between aNSPC activity and

their biological significance. In this review, we aim to bring together the current

state of knowledge on aNSPCs from studies investigating the zebrafish CNS,

while highlighting emerging cell cycle regulators and outstanding questions

that will help to advance this fascinating field of stem cell biology.
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Introduction

Teleost fishes serve as exceptional models to study the cell cycle dynamics and

function of adult neural stem and progenitor cells (aNSPCs) throughout the central

nervous system (CNS). The lifelong presence of proliferating aNSPCs across diverse stem

cell niches of the brain (Zupanc et al., 2005; Grandel et al., 2006), along with their

remarkable neuroregenerative capacity following brain and spinal cord injury (Zupanc

and Sirbulescu, 2012) make teleosts extremely attractive to study. These attributes have
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allowed researchers to take advantage of fish models to study the

biological significance of adult neurogenesis (Lindsey and

Tropepe, 2006) as well as the process of timely brain and

spinal cord repair (Becker and Becker, 2008). Adult

neurogenesis is defined as a lineage-directed process that

commences with dividing aNSPCs that generate daughter cells

fated towards a neuronal phenotype. A major difference between

constitutive adult neurogenesis and regenerative neurogenesis

that occurs after CNS damage, is that the latter largely relies on

the activation of normally quiescent aNSPCs to re-enter the cell

cycle. A fundamental question under homeostasis and following

injury is what suite of factors are responsible for controlling

aNSPC activity.

Distinguished as the most diverse vertebrate class and having

adapted to nearly every aquatic environment (Kotrschal and

Palzenberger, 1992), teleosts are excellent examples to explore

how differences in habitat, environment, social interactions, and

neurotrauma can impinge upon aNSPC function. The zebrafish

(Danio rerio) has become one of the most popular laboratory

models to study these factors in the brain and spinal cord. The

social nature and complex behaviours displayed by this species

(Kalueff et al., 2013), in combination with the multitude of

molecular tools and small size of the CNS for imaging, has set

the zebrafish apart to study neurogenesis and neurorepair. Unlike

amniotes (Kriegstein and Alvarez-Buylla, 2009), fish retain

developmental stem cell populations over ontogeny, including

radial-glial cells (RGCs; aka ependymoglia in the spinal cord) in a

quiescent or cycling state, and constitutively proliferating neuro-

epithelial cells (NECs). These cells are distributed across diverse

integrative and sensory niches of the brain and spinal cord

(Lindsey et al., 2018). Therefore, this model offers the

opportunity to uncover how unique biological contexts can

stimulate aNSPC phenotypes (Figure 1), and help reveal the

mechanisms regulating cell cycle activity.

Here, we provide an overview of the recent factors

understood to regulate aNSPC cell cycle dynamics in teleosts,

focusing on studies from the zebrafish model (summarized in

Table 1). A key element of this review is to synthesize our

knowledge of how day-to-day environmental stimuli can

modulate constitutive rates of cell proliferation; an area poorly

investigated in fish. We conclude by discussing key outstanding

questions and available techniques to move these forward, to

yield novel insight regarding the activity of aNSPCs under

physiological and pathological conditions.

FIGURE 1
The many regulators of niche-specific aNSPCs in the adult zebrafish CNS. Mid-sagittal view of the zebrafish brain and spinal cord displaying
major aNSPC niches and the array of homeostatic, injury-induced, or neurodegenerative regulators that may control their cell cycle dynamics. OB,
olfactory bulbs; Tel, telencephalon; Dm, medial dorsal pallium; Dl, lateral dorsal pallium; Vv, ventral ventricular zone; TeO, optic tectum; PoA,
preoptic area; H, hypothalamus; CCe, corpus cerebelli; LX/LVII, vagal and facial lobes; SC, spinal cord. Dark blue indicates approximate location
of brain ventricles and the spinal cord central canal.

Frontiers in Cell and Developmental Biology frontiersin.org02

Caron et al. 10.3389/fcell.2022.941893

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2022.941893


The effect of stress and social
behaviour on adult neural stem and
progenitor cell activity

Zebrafish are highly social species in the wild and under

laboratory conditions (Suriyampola et al., 2016). Social

interactions can take the form of predator-prey encounters,

mating opportunities, conspecific relationships, and the

formation of social hierarchies. This daily social plasticity

commonly involves one or more chemosensory or visual cues,

as well as the possibility of changes in swimming performance.

This suggests that a broad range of adult niches could be

implicated in aNSPC dynamics, including those processing

sensory input and potentially even the spinal cord where

additional motor neurons may be required to accommodate

increased swimming. A consequence of these interactions is

their effect on the physiology of the animal, such as the stress

axis, and how this information acts to control aNSPCs behaviour.

In thinking how social behaviours modulate aNSPC activity,

a key question is what constitutes a physiological stressful event.

TABLE 1 Factors impacting aNSPC cell cycle activity in the zebrafish CNS.

Regulator Stem cell niche aNSPC Δ cell cycle References

Telencephalon

aEstrogen Whole brain RGC & NEC Decrease Makantasi and Dermon, (2014)

Tank enrichment Whole Tel RGC & NEC Increase von Krogh et al. (2010)

Male social subordination DP RGC Decrease Tea et al. (2019)

Social stimulation DP, PoA RGC Increase Dunlap et al. (2021)

GnRH PoA RGC & NEC Increase Ceriani and Whitlock, (2021)

Dorsal stab lesion Tel RGC Increase Kroehne et al. (2011); Kishimoto et al. (2012);
Barbosa et al. (2015)

cxcr5 knock-down DP (injury) RGC Decrease Kizil et al. (2012a)

Gata3 knock-down DP (injury) RGC Decrease Kizil et al. (2012b)

BMP/Id1 DP (homeostasis and injury) RGC Maintain quiescence Rodriguez Viales et al. (2015), Zhang et al., 2021

Mdka DP (homeostasis and injury) RGC Quiescence Lübke et al. (2022)

Notch DP (homeostasis and injury) RGC Quiescence Chapouton et al. (2010); Anand and Mondal, (2017)

Inflammation DP (homeostasis and injury) RGC Increase Kyritsis et al. (2012)

Chronic hyperglycemia Tel (homeostasis and injury) RGC Decrease Dorsemans et al. (2017), Ghaddar et al. (2021)

Amyloid-β-42 Tel RGC & NEC Increase Cosacak et al. (2019); Bhattarai et al. (2020)

Serotonin Tel (AD model) RGC Decrease Bhattarai et al. (2020)

BDNF Tel (AD model) RGC Increase Bhattarai et al. (2020)

IL-4/STAT6 Tel (AD model) RGC Increase Bhattarai et al. (2020)

Serotonin promotion PoA RGC Increase Thompson et al. (2017)

Midbrain

Visual deprivation TeO NEC Decrease Lindsey et al. (2014); Boulanger-Weill et al. (2017);
Hall and Tropepe, (2018a)

Serotonin inhibition H RGC Decrease Pérez et al. (2013)

Serotonin promotion H RGC Increase Thompson et al. (2017)

Injury TeO RGC Increase Shimizu et al. (2018); Lindsey et al. (2019)

IL6/Stat3 TeO (injury) RGC Increase Shimizu et al. (2021)

Injury TeO NEC Increase Shimizu et al. (2018); Lindsey et al. (2019)

Chronic hyperglycemia MB RGC & NEC Decrease Dorsemans et al. (2017)

Chronic starvation TeO NEC Decrease Benítez-Santana et al. (2016)

Corpus Cerebelli and Spinal Cord

Injury CCe RGC & NEC Increase Kaslin et al. (2017)

Chronic hyperglycemia CCe RGC & NEC Decrease Stankiewicz et al. (2017)

Exercise SC RGC Increase Chang et al. (2021)

Injury SC RGC Increase Reimer et al. (2009)

aBrain-wide stem cell niches affected.

Only studies showing a significant effect on aNSPC proliferation are listed. Tel, Telencephalon; DP, dorsal pallium; PoA, preoptic area; AD, Alzheimer’s Disease; TeO, optic tectum; H,

hypothalamus; MB, midbrain; CCe, corpus cerebelli; SC, spinal cord; RGC, radial-glial cells; NEC, neuro-epithelial cells.
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Zebrafish RGCs are known to possess the glucocorticoid receptor

Nr3c1 (Nelson et al., 2019), making them sensitive to changes in

circulating cortisol. Higher cortisol levels have been identified in

group-housed compared to individually-housed zebrafish

(Onarheim et al., 2022), arguing against the idea that isolation

consistently increases stress in social animals. One hypothesis

may be that group composition, including sex ratios, fish size,

and potential for hierarchies, are potential drivers of stress levels.

Cues in the environment of isolated fish further appear to play a

role in regulating cortisol levels. This has been illustrated by

zebrafish having higher cortisol in an enriched-isolated context

compared to a barren-isolated context (von Krogh et al., 2010).

Work by Lindsey and Tropepe (2014) rather found that cortisol

levels strongly correlated with social context, with the effect on

aNSPC proliferation or neuronal differentiation being niche-

specific. Social novelty and isolation revealed lower cortisol levels

than grouped animals, with aNSPCs in sensory niches having the

largest reduction in cell cycle activity. This work highlights the

importance of pre-existing social experiences in shaping the

future stress response and probability of stimulating niche-

specific aNSPCs.

A small number of studies have also centered around the role

of social hierarchies in driving aNSPC behaviour. One interesting

report focused on sex-specific differences. In this study, the

authors illustrated that subordinate males displayed reduced

cell proliferation and neurogenesis in the dorsal telencephalon,

along with increased cortisol levels (Tea et al., 2019). In females,

however, no change was observed in dominant or subordinate

animals when compared to group-housed controls. This suggests

the possibility that hormonal differences may play a part in the

cellular activity of aNSPCs. This finding aligns with earlier work

studying socially suppressed subordinate male cichlids, where

cell proliferation in the brain was lowest compared with

dominant animals (Maruska et al., 2012). Notably, this study

showed that if males were given the opportunity to rise in rank,

the proportion of dividing aNSPCs increased in parallel. In the

zebrafish, we now understand that changes in social status are

closely correlated with gene expression patterns involved in

neural plasticity in a niche-specific manner (Teles et al., 2016).

The emerging role of hormones and
diet on adult neural stem and
progenitor cell regulation

In the past few years, newer studies have emerged addressing

the role of hormones and diet in regulating aNSPC activity in the

zebrafish. This recent focus could provide valuable insight

towards the importance of sex-specific differences,

reproductive cycles, seasonality, food availability and nutrient

composition in teleost fish. Several of these factors could also be

increasingly important to consider during the design phase of

experiments aimed at studying adult neurogenic plasticity.

Interestingly, in zebrafish only RGCs and not NECs are

known to express the estrogen-synthesizing enzyme,

aromatase-B (Pellegrini et al., 2016). Upon administration of

estrogen to female zebrafish a reduction in cell proliferation in

multiple brain regions has been reported, with the greatest

impact in the dorsal/ventral telencephalon, preoptic area,

hypothalamus, and cerebellum (Makantasi and Dermon,

2014). Within the niche of the preoptic area, animals treated

with gonadotropin releasing hormone, but not testosterone

produce an increase in cell division in non-RGC stem cell

populations (Ceriani and Whitlock, 2021). Alternatively,

inhibiting aNSPCs residing in the hypothalamus using the

serotonin blocker tryptophan hydroxylase attenuates aNSPC

proliferation, illustrating the dependency of stem cells in this

domain on serotonin (Pérez et al., 2013).

How zebrafish diet or feeding regime relates to proliferative

behaviour of aNSPCs is poorly characterized to date. Currently,

studies have taken the form of either exposure to a high fat diet or

starvation. Chronic hyperglycemia in adult zebrafish, for

instance, was reported to impair homeostatic neurogenesis in

the telencephalon, midbrain, and cerebellum, while also having a

pro-inflammatory and oxidative stress effect (Dorsemans et al.,

2017; Stankiewicz et al., 2017; Ghaddar et al., 2021). Conversely,

10 weeks of reduced food intake appears to be insufficient to alter

aNSPC activity in the forebrain (Arslan-Ergul et al., 2016), but a

5 week starvation is adequate to decrease aNSPC proliferation in

the optic tectum (Benítez-Santana et al., 2016). Additional niche-

wide studies focusing on food type, nutrient composition, and

feeding frequency undoubtedly would be beneficial to determine

if distinct aNSPC populations are differentially affected and how

this relates to changes in cell metabolism.

Sensory stimuli as a potent driver of
adult neural stem and progenitor cell
activity

Sensory input is a potent regulator of animal behaviour. In an

aquatic environment teleosts receive this information from visual

cues, olfactory and taste cues (i.e., chemosensory), as well as

lateral line input (i.e., mechanosensory). A unique feature of

zebrafish is that aNSPCs exist in neurogenic niches within

primary processing sensory structures of the mature brain,

including the forebrain olfactory bulbs (smell), midbrain optic

tectum (vision), and hindbrain vagal/facial lobes (taste;

Zupanc et al., 2005). These sensory domains offer the

ability to study a range of modality-specific cues and their

effect on aNSPC lineage activity. With several teleost models

having conserved sensory niches, including the zebrafish,

medaka, brown ghost knifefish, goldfish, and killifish (Ganz

and Brand, 2016), this field is wide open to compare the

functional role of aNSPCs using species-specific biologically

relevant forms of sensory stimuli.
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Studies applying forms of environmental enrichment or

selective visual cues have shown a strong link between sensory

input and aNSPC activity. A pointed example of how the mere

opportunity for visual stimuli can induce changes in long-term

aNSPC activity comes from recent work by Dunlap et al. (2021).

Here, socially acclimated zebrafish that were first isolated, before

being exposed to conspecifics in an adjacent tank chamber, was

sufficient alone to enhance forebrain aNSPC activity. The above

finding is supported by an early study exposing zebrafish to an

enriched environment adorned with aquatic plants and gravel, or

devoid of such items, showing a general increase in proliferation

of forebrain aNSPCs with enrichment (von Krogh et al., 2010).

An outstanding question is what effect does visual enrichment

have on parent or progenitor NECs along the tectal marginal

zone (Lindsey et al., 2018a), that would be predicted to be

modulated.

Visual and chemosensory assays have also been employed to

more directly test the effect of modality-specific sensory input on

the activity of aNSPCs in corresponding sensory niches.

Exposing zebrafish to monochromatic light has been

demonstrated to decrease the proportion of cycling aNSPCs in

the tectal sensory niche (Lindsey et al., 2014). Experiments using

larval zebrafish also show that visual restriction impedes

neurogenesis and functional integration into the optic tectum,

correlating with reduced BDNF production (Boulanger-Weill

et al., 2017; Hall and Tropepe, 2018a). In contrast, a 7-day

treatment using a chemosensory assay resulted in an increase

in neuronal survival but limited effect on RGC proliferation in

the bulbs and vagal lobe (Lindsey et al., 2014). A major finding

from this work was that modality-specific sensory input triggered

the relevant sensory processing niche, and not those coding

alternative modalities.

Taking advantage of sensory niches in the adult zebrafish

brain further offers the chance to study the functional

significance of aNSPCs for learning. Using sensory paradigms

to explore the impact of task complexity on endogenous

neurogenesis arising from sensory zones would provide new

insight not possible in mammals. For instance, building on

previous olfactory learning paradigms (Braubach et al., 2009),

researchers can now ask how olfactory learning might modulate

aNSPC activity along the Rostral Migratory Stream (RMS; Adolf

et al., 2006; Kishimoto et al., 2012) as compared to resident RGC

behaviour directly in the bulbs. This would provide valuable

comparative data with mammals who maintain a lifelong RMS

(Bond et al., 2015). In addition, since learning implicitly involved

a memory component, with the dorsal lateral niche of the

telencephalon homologous to the mammalian hippocampus

(Ganz et al., 2015), the combined activity of aNSPCs in

sensory and cognitive niches can be examined.

Modulation of spinal cord RGCs for the most part has not

been explored as this population resides mainly in a quiescent

state. Recently, one of the first studies of its kind has shown that

zebrafish subjected to increased swimming using a swim tunnel

was sufficient to enhance cell cycle proliferation of normally

dormant spinal cord ependymoglia, and the generation of

newborn motor neurons (Chang et al., 2021). Applying the

same paradigm after spinal cord injury showed a similar

trend, proposing that increased swimming exercise modulates

neurogenesis. Conversely, experiments performing movement

restraint in larval zebrafish have illustrated a decrease in neural

stem and progenitor proliferation in the developing forebrain,

though how robust this effect is across the neuro-axis remains

unknown (Hall and Tropepe, 2018b). Together, these studies

provide early support for the role of “exercise” in modulating

baseline levels of aNSPCs in the brain and spinal cord of teleost

models.

Cell intrinsic and injury-induced
signals regulate adult neural stem and
progenitor cells in the damaged
central nervous system

Much effort has been placed on understanding the behaviour

of RGCs and NECs following CNS damage compared to

homeostatic modulation. More recently, this has also included

examination of aNSPCs in a neurodegenerative context.

Common to brain and spinal cord injury is the involvement

of quiescent RGCs that are awakened following insult to re-enter

the cell cycle and repopulate lost neuronal subtypes. In some

instances, constitutively active NECs have been shown to

additionally contribute to repair. Growing evidence suggests

that aNSPCs retain diverse regenerative capacities that differ

by stem cell niche in the adult CNS (Lindsey et al., 2018a), but

their role in neurodegenerative diseases is only now beginning to

be uncovered. This implies the need to better understand the

balance between the factors comprising the damaged stem cell

niche, and the intrinsic regenerative programs of distinct aNSPC

populations. With many excellent reviews already published on

this topic (Alunni and Bally-Cuif, 2016; Alunni et al., 2020), here

we strive to provide a brief synopsis of the newest developments

in this area to contrast with the regulators of aNSPCs observed

under physiological conditions.

In the forebrain and spinal cord, RGCs drive the repair

process. Accordingly, dorsal forebrain stab injury leads to the

activation of RGCs, in addition to oligodendrocyte precursor

cells (OPCs), that serve to replenish lost neurons and

oligodendrocytes, respectively (Kroehne et al., 2011; Baumgart

et al., 2012; Kishimoto et al., 2012; Barbosa et al., 2015; Sanchez-

Gonzales et al., 2022). Most recently, transcriptomic analysis has

provided insight regarding early proliferative signatures of RGCs

and OPCs in the telencephalon and spinal cord after injury

(Tsata et al., 2020; Demirci et al., 2022; Sanchez-Gonzales et al.,

2022), adding to our existing knowledge of the role of cxcr5 and

Gata3 during neurorepair (Kizil et al., 2012a; 2012b). In the

dorsal forebrain, genes regulating stem cell quiescence under
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homeostasis, such as mdka, have also recently been shown to

continue to be expressed following brain injury in non-reactive,

RGC populations, suggesting a potential mechanism to prevent

NSPC pool exhaustion (Lübke et al., 2022). This finding will add

valuable information to our deep-rooted understanding of the

role of Notch signalling in maintaining the quiescent state of

NSPCs (Chapouton et al., 2010; Anand and Mondal, 2017). In

the spinal cord, upon injury ependymoglia enter the cell cycle to

produce motor neurons for functional swimming recovery

(Reimer et al., 2009). In both the forebrain and spinal cord,

numerous developmental regulatory pathways, such as Wnt,

Notch, Shh, and ID1/BMP, are recapitulated following injury

(Cardozo et al., 2017; Alunni et al., 2020; Zhang et al., 2021).

Additionally, studies in the adult forebrain (Kyritsis et al., 2012)

and larval spinal cord (Tsarouchas et al., 2018) confirm that

activation of the immune response post-injury is critical to

induce RGCs to regenerate. The rapid repair offered by the

larval zebrafish following spinal cord injury has also gained

traction as an efficient model for drug screening to identify

therapeutics to test in mammals to improve spinal cord repair

(Chapela et al., 2019; Nelson and Granato, 2022). Such studies

equally afford the opportunity to examine how NSPC

proliferative activity and intrinsic signaling pathways are

modulated with application of these small molecules in an

organism capable of successful spinal cord regeneration.

Comparing the interaction between the immune response and

RGCs or OPCs of the mature brain and spinal cord would be of

great interest to identify CNS-wide themes in neuroregeneration.

Unfortunately, detailed studies investigating the immune

response following spinal cord injury in juvenile and adult

stages are still lacking.

A small number of studies have also underscored the

contribution of constitutively cycling NECs following brain

injury. In the optic tectum, quiescent RGCs reside along the

roof of the tectal ventricle whereas a pool of NECs sit at the

midline tectal marginal zone, continuously furnishing the

optic tectum with a small number of newborn neurons (Ito

et al., 2010). Following tectal injury, it was reported that NECs

amplify their cell cycle rates and neuronal output, while

progeny of activated RGCs produce only newborn RGCs

(Lindsey et al., 2019). Tectal injuries more proximal to the

NEC population and in younger adult animals nevertheless

showed evidence that RGCs could generate newborn neurons

(Shimizu et al., 2018), suggesting that adult age appears to play

a role in the regenerative potential of aNSPCs (Edelmann

et al., 2013). This and more recent work has implicated Wnt

and IL-6/STAT3 pathways in regulating RGC activity after

injury in the tectum (Shimizu et al., 2018; 2021). In the adult

cerebellum, NECs also appear to be the main contributor to

restorative neurogenesis (Kaslin et al., 2017). However, in

juvenile fish, RGCs of the cerebellum play a more prominent

role in the regenerative process alongside NECs, giving rise to

neuronal phenotypes similar to constitutive neurogenesis.

Collectively, work on RGCs and NECs provide growing

evidence that the regenerative process in zebrafish is

accomplished by a combination of reactivated RGCs and

constitutively proliferating NECs that are influenced by

cellular senescence.

Models of Alzheimer’s and Parkinson’s disease have also

been established in the zebrafish, permitting studies of aNSPC

activity during the process of neurodegeneration. Alzheimer’s

models along with single-cell transcriptomics have illustrated

neurodegenerative specific regulation of aNSPCs. These

studies show that induced inflammation leads to a cascade

of events, initiated by the activation of the IL4/STAT6

pathway. Subsequent downregulation of serotonin

metabolism and promotion of BDNF in turn increase

aNSPCs proliferation in a subtype and niche-specific

manner (Bhattarai et al., 2016; Cosacak et al., 2019;

Bhattarai et al., 2020). Parallel studies in older adult

zebrafish showed similar levels of aNSPC proliferation, but

a diminished immune response and fewer newborn neurons

(Bhattarai et al., 2017). Modelling Parkinson’s disease in the

zebrafish, reports have shown that ablation of dopaminergic

neurons leads to inflammation and RGC progenitor activity in

the diencephalon to repopulate newborn dopaminergic

neurons (Caldwell et al., 2019). Inducible transgenic lines

have also come available to temporally ablate dopaminergic

neurons (Godoy et al., 2015), providing a valuable tool to

better interrogate this disease. While still new to the field of

neurodegeneration, the zebrafish model offers many excellent

advantages to elucidate the response of aNSPCs following

Alzheimer’s or Parkinson’s disease that have yet to be

capitalized upon.

Outstanding questions and future
directions

The zebrafish is a tractable model to probe the mechanisms

regulating aNSPC function. Still many outstanding questions

persist. First, many niches of the brain are composed of

populations of both quiescent and actively cycling RGCs.

Adult neurogenesis by definition focuses on constitutively

proliferating cells, whereas CNS regenerative studies

concentrate primarily on the reactivation of quiescent

aNSPCs. Whether certain forms of stimuli under homeostasis

are sufficient to push quiescent RGCs into a cycling state, or a

subpopulation of normally dividing RGCs of the forebrain might

contribute to regeneration, is unclear. Equally unknown is

whether RGCs or NECs can undergo shifts in their

multipotency to generate specific neuronal lineages under

different contexts, and if so, what are the intrinsic programs

or changes in the microenvironment responsible for this cellular

plasticity? Second, without knowledge of the molecular signature

of similar aNSPCs found in different adult niches, it is unclear
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whether their gene expression profiles align with their varied

response to environmental or injury-induced cues. Many cell

autonomous features also remain to be understood, including cell

metabolism (Santoro, 2014), senescence (Da Silva-Álvarez et al.,

2020), and the role of the unfolded protein response (Clark et al.,

2020). Considering the stem cell niche, most of our knowledge is

limited to the role of the immune response post-injury in

activating aNSPC populations. Studying the involvement of

neighboring cells, the extracellular matrix (Kim et al., 2018),

and vasculature (Chen et al., 2019) is paramount to gain broader

knowledge of niche-specific regulation of aNSPCs for successful

neurorepair.

Methods to study the activity of zebrafish aNSPCs are

extensive. These include the use of thymidine analogues

such as BrdU and EdU, that label cells undergoing DNA

synthesis (Cavanagh et al., 2011), as well as the endogenous

cell cycle marker PCNA (Schönenberger et al., 2015). The

dual Fucci line further allows changes in cell cycle phases to

be fluorescently monitored (Bouldin and Kimelman, 2014);

a generally underutilized tool thus far. More recent

tamoxifen-inducible Cre-lox systems in zebrafish have

allowed temporal colour-switching of aNSPCs to monitor

population dynamics (Mosimann et al., 2011). Above all,

the zebrabow system permits the most advanced multi-

colour labeling to faithfully track stem cell lineages

arising from parent stem cells (Pan et al., 2013). This

suite of tools provides the opportunity to gain deeper

insight towards aNSPC context-dependent activity.

Combining these techniques with the multiple imaging

approaches in the zebrafish, including live in vivo

studies, 3-dimensional imaging of the CNS (Lindsey

et al., 2018b), and advanced electron microscopy

(Oorschot et al., 2021), the next decade promises to hold

many exciting discoveries regarding teleost aNSPC activity,

regulation, and biological significance.
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